531 research outputs found

    Soft drink and water bottling plants regulation 61-32

    Get PDF
    This regulation sets forth minimum health standards, procedures and practices to ensure that soft drinks and bottled waters are manufactured in South Carolina in a safe and wholesome manner

    Investigating the Physicochemical Property Changes of Plastic Packaging Exposed to UV Irradiation and Different Aqueous Environments

    Get PDF
    A wide range of weathering processes contributes to the degradation of plastic litter items which leads to the formation of microplastics that may be detrimental to marine ecosystems and the organisms inhabiting them. In this study, the impact of UV exposure on the degradation of clear polypropylene (CPP), black polypropylene (BPP), and polyethylene terephthalate (PET) packaging materials was investigated over a period of 6 weeks under dry air conditions representing the terrestrial environment. The exposure was conducted using differently sized and shaped samples at irradiation intensities of 65 W/m2 and 130 W/m2. Results indicated that UV irradiation led to changes in the properties of PET, BPP, and CPP that were proportional to the intensity delivered, leading to a higher level of mass loss, carbonyl indices, crystallinities, and microhardness in all polymer types at 130 W/m2 relative to 65 W/m2. However, material shape and size did not have a significant influence on any property for any of the test materials. Increased mass loss over time was accompanied by considerable increases in carbonyl index (CI) for both PPs. Clear PP (CPP) underwent the most severe degradation, resulting in the highest mass loss, increase in crystallinity, and CI. BPP was less degraded and modified by the UV irradiation than the CPP, indicating that the colorant, carbon black, provided some degree of protection to the bulk polymer material. PET was the least degraded of the three materials, suggesting this polymer type is more resistant to UV degradation. The differences in the degradation behaviours of the three test materials under dry environmental conditions indicate that the UV exposure history of plastic litter might play an important role in its potential for further degradation once it reaches the marine environment. Furthermore, analysis of samples exposed to UV in aqueous media reveals a more irregular set of trends for most material properties measured. Overall, the degree of degradation resulting from UV irradiation in dry environments was more pronounced than in aqueous environments, although the most significant property changes were observed for materials without previous UV exposure histories. Samples with previous UV histories showed higher resistance to further crystallinity changes, which appeared to be due to crosslinking in the pretreatment exposures inhibiting chain alignment into crystalline structures. The effect of solution medium was insignificant, although the presence of water allowed hydrolytic degradation to proceed simultaneously with UV degradation for PET. The reduction of CI in pretreated materials in the aqueous exposures, combined with the mass loss, suggest that the degraded surface layer erodes or products dissolve into surrounding solution medium, leaving a fresh surface of plastic exposed.publishedVersio

    Precipitation of calcium compounds onto rock surfaces in water with cementitious material

    Get PDF
    In this study, the precipitation of minerals onto rock surfaces was investigated to consider whether sealing of pores and cracks in rock can be accelerated. Cylindrical specimens were prepared and then kept in purified water with powders of high-strength and ultra-low-permeability concrete (HSULPC), which will be used to confine transuranic wastes in Japan. Then, the rock specimens were weighed and the surfaces of rock specimens were inspected under a microscope. It was recognized that precipitation occurred on the surface of the rock specimens. It was also shown that precipitation did not occur on rock specimens kept in water without HSULPC. The weight of all specimens stored in HSULPC increased, and the observed weight change was larger for rocks with higher porosities. It is concluded that precipitation of minerals occurs on the rock surface when the rock is kept in water with HSULPC powders. From the results obtained in this study, it is suggested that the sealing of pores and cracks in rock can be accelerated by the precipitation of calcium compounds using HSULPC. It is concluded that HSULPC is useful for underground radioactive waste disposal

    An Investigation of Environmental Conditions Experienced During the Life of High Value Wood Components and Products

    Get PDF
    Australian forest industries have a long history of export trade of a wide range of products from woodchips(for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in mperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design. This calculator forms part of the free interactive website www.timbers.com.au

    The prevention of spoilage in fruit juices by alicyclobacillus acidoterrestris and propionibacterium cyclohexanicum

    Get PDF
    During the past two decades several novel spoilage micro-organisms have emerged. Raw materials and products have been contaminated in increasing numbers of spoilage incidents causing widespread problems within the juice and beverage industry. This study investigates two such spoilage micro-organisms, A licyclobacillus acidoterrestris and Propionibacterium cyclohexanicum, both isolated from pasteurised contaminated fruit juice. A variety of media were tested to determine which supported optimal growth of A. acidoterrestris with Orange Serum Agar providing consistently high plate counts. The presence of A. acidoterrestris in raw materials and shelf stable products was monitored and the effects on its growth and survival of temperature, headspace and movement of containers during storage were investigated. The survival of P. cyclohexanicum after pasteurisation was assessed and growth determined at a variety of temperatures. The survival of each bacterium was investigated in different fruit juices, when challenged by the preservatives sodium benzoate and potassium sorbate and the bacteriocin nisin and when grown in the same juice container and co-cultured on the same solid medium. 17% of samples tested were contaminated by A. acidoterrestris; however P. cyclohexanicum was not isolated from any sample. P. cyclohexanicum survived 10 minutes at temperatures of 4°C to 95°C and grew in orange, tomato and pineapple juice while A. acidoterrestris grew in all juices tested. A. acidoterrestris was inhibited by sodium benzoate (500ppm), potassium sorbate (500ppm) and nisin (51U/ml). P. cyclohexanicum, although not inhibited by nisin (1000IU/ml), was susceptible to sodium benzoate (500ppm) and potassium sorbate (l000ppm). I-Ieadspace, movement of containers and storage temperatures affected detection rates of A. acjdoterrestrjs. Co-cultures demonstrated that if found within the same enviromnent, both bacilli can survive and cause spoilage. A. acidoterrestris is a world wide contaminant within the soft drinks industry and, considering the results of these studies P. cyclohexanicum with its heat resistance and tolerance to nisin may also emerge as a major spoilage microorganis

    agroString: Visibility and Provenance through a Private Blockchain Platform for Agricultural Dispense towards Consumers

    Get PDF
    It is a known fact that large quantities of farm and meat products rot and are wasted if correct actions are not taken, which may lead to serious health issues if consumed. There is no proper system for tracking and communicating the status of the goods to their respective stakeholders in a secure way. Consumers have every right to know the quality of the products they consume. Using monitoring tools, such as the Internet of Agricultural Things (IoAT), and modern data protection techniques for storing and sharing, will help mitigate data integrity issues during the transmission of sensor records, increasing the data quality. The visibility state at the customer end is also improved, and they are aware of the agricultural product’s conditions throughout the real-time distribution process. In this paper, we developed and implemented a CorDapp application to manage the data for the supply chain, called “agroString”. We collected the temperature and humidity data using IoAT-Edge devices and various datasets from multiple sources. We then sent those readings to the CorDapp agroString and successfully shared them among the relevant parties. With the help of a Corda private blockchain, we attempted to increase data integrity, trust, visibility, provenance, and quality at each logistic step, while decreasing blockchain and central system limitations

    Remote-Handled Transuranic Content Codes

    Full text link

    Sunflower Oil Industry By-product as Natural Filler of Biocomposite Foams for Packaging Applications

    Get PDF
    The use of agroindustry by-products as reinforcements and/or composites filler is an innovative and economically attractive option that is still under study. Hence, the present work aims to study composite foams based on cassava-starch and sunflower oil press cake (SOPC), an oil industry by-product, using urea as an additive to enhance the biocomposites foaming capacity. Filler content (0, 20, and 40 wt%) and urea addition effect on foam morphology, physical properties and mechanical behaviour were analysed and compared to a benchmark polystyrene (PS) foam. In comparison with conventional PS foams, biofoams containing urea presented comparable mechanical properties yet higher hydrophilicity. Besides, formulations containing SOPC resulted in denser and harder materials and higher water uptake capacity than starch-based foams. Results provide further insights into biobased biodegradable foams development using agroindustrial residues as raw material and urea as foaming agent, with promising characteristics for food packaging.Centro de Investigación y Desarrollo en Criotecnología de Alimento
    corecore